PRIMO PIANO
Meningite, l’intelligenza artificiale per capirne la natura: la scoperta di ricercatori Unisannio

Ascolta la lettura dell'articolo
Scoperto un nuovo metodo basato sull’intelligenza artificiale per distinguere
rapidamente la meningite batterica da quella virale: e’ quanto emerge da uno studio condotto, fatto di ricerca e sperimentazione, dal gruppo guidato da Salvatore Rampone dell’Università del Sannio (e composto da Gianni D’Angelo, Raffaele Pilla, Salvatore Rampone) e dalla la Prima Divisione di Malattie infettive dell’Ospedale Cotugno, azienda
ospedaliera dei Colli, di Napoli, guidata dal direttore Carlo Tascini.
I ricercatori hanno utilizzato metodologie basate sull’intelligenza artificiale e l’apprendimento automatico per produrre regole e formule immediatamente applicabili in contesti clinici.
I risultati, appena pubblicati dalla Springer Nature evidenziano che una particolare combinazione dei parametri clinici è la chiave per distinguere correttamente le eziologie della meningite. Le formule raggiungono il 100% di sensibilità nel rilevare la meningite batterica. Globalmente, tale scoperta ha il potenziale di tracciare la strada verso un nuovo approccio in diagnosi e trattamento delle patologie infettive.
“La meningite – viene spiegato – è un’infiammazione delle membrane protettive che coprono il cervello ed il midollo spinale. In particolare, come evidenziato dalla cronaca recente, la meningite batterica può avere esiti fatali, specialmente quando la diagnosi viene ritardata. Ciò spinge ad utilizzare precocemente trattamenti antibiotici e/o antivirali spesso non necessari o inopportuni.
La meningite può avere infatti cause diverse e discriminarle è ancora considerato un compito difficile, soprattutto quando alcuni parametri clinici specifici, per lo più derivati dall’analisi del sangue e del liquido cerebrospinale, non sono completamente disponibili.”